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Abstract: As the number of active and passive satellites of the Earth increases, the probability of a direct 

collision either with some other satellite or with space debris grows. Analysis of the functionality of space systems 
over time must take into account the possibility of such events, as well as the maneuvers performed to mitigate the 
danger of a direct collision. The possibility of using the developed processor for situational analysis to solve close 
approach problems between multi-satellite systems and space debris is considered. This processor is one of the 
developed computing tools at the core of a multiphysics environment for space mission simulations. The focus is 
on the interface between models of multi-satellite systems and space debris systems. 
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Резюме: С нарастване на броя на активните и пасивни спътници на Земята се увеличава 

вероятността от пряко стълкновение, както между спътници, така и между спътници и космически 
отломки. Анализът на функционалността на космическите системи във времето трябва да отчита 
възможността от такива събития, както и от извършваните маневри за смекчаване на опасността 
от пряко стълкновение. Разглежда се възможността за използване на разработения процесор за 
ситуационен анализ за решаване на задачи на сближаване между много-спътникови системи и 
космически отломки. Този процесор е едно от изчислителните средства в основата на мултифизична 
среда за симулации на космически мисии. В центъра на вниманието е интерфейса между модели на 
много-спътникови системи и системи от космически отломки. 

 
 
Introduction 

 

In recent decades, human activity in space has been increasing and this is expected to continue 
in the future [1]. Missions involving different numbers of satellites of different classes are developed and 
implemented. Federations of missions aimed at solving common tasks are considered. Horstmann at 
all. [2] consider various sources of the increase in the number of space debris. Lewis and Marsh [3] 
discuss various patterns of debris growth. The increasing number of space debris is emerging as a 
significant problem in the near future. 

The development of models for computer simulations of the functioning of satellite systems in 
the conditions of the hostile environment space environment (in particular, the impact of space debris) 
can provide helpful information at various stages of the preparation to the realization of the missions. 
The inclusion in the analysis of satellite missions and space debris reveals opportunities for solving 
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tasks related to reducing the danger of direct collisions, as well as possible collisions [4]. The 
modification of the functionality of multi-satellite missions/systems to solve relevant tasks can also be 
explored further. 

Algorithms, methods, and tools for simulations of space missions are developed at IKIT. This 
paper presents part of the work on the development of a situational processor for determining close 
approaches between satellites and space debris. Attention is focused on the semantics of 
communications between models within a multiphysics environment for space mission simulations. 

 
Development of tools for Multiphysics simulation of satellite missions  
 

In [6], a multiphysics multi-layer simulation model including various basic objects was presented. 
Fig. 1 shows a part of this model that is relevant to the present consideration. 

 

 
 

        Fig. 1. Part of the conceptual scheme of multiphysics environment for space mission simulation  

 
The different models are located at levels corresponding to the sequence of execution of the 

respective solvers. At the first level are models of multi-satellite systems and space debris. Other models 
at this level are "Observer" models, which are auxiliary in nature and used to display dynamic scenes. 
At the second level are models related to the calculation of parameters of the space environment at 
points of the trajectory of the satellites from the various satellite systems included in the general 
simulation model. At this level are models related to the visualization of some dynamic scenes. At the 
third level are models of situational analysis. 

The presented collections of models, which are vertically related to models of basic space 
objects (satellites, systems of satellites, and space debris, all in the conditions of the atmosphere, 
ionosphere, and magnetosphere) (can) be connected to each other through interfaces described in 
corresponding descriptors [ 6]. Based on these descriptors, relevant solvers take the results of the 
previous ones and thus simulate various processes (mechanical, situational, mechatronic, and 
functional related to the operation of subsystems and payload of individual satellites). 

In the conditions of federations between separate satellite systems, connections between some 
models from different systems connected to major space objects are also necessary. Examples of such 
connections are tasks for convergences between active satellites and objects from different populations 
of passive, failed satellites, debris from satellites, and other space debris. 

Each model is characterized by specific attributes. Setting attribute values to a model defines a 
corresponding object. The relationships of an object to other objects are also important. The attributes 
of individual objects are stored in descriptors. Each level of Figure 1 has a separate descriptor.  
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The number of descriptors for a level and the starting address at which it is located are shared by a 
named common area. For this purpose, subroutine add_object is used (Fig. 2) [7]. 

 

 
 

       Fig. 2. a). Descriptor creation of solver descriptor; б). descriptor creation of initial values problem 

 
Figure 2.a shows a descriptor of computing processors. The attributes it includes are: 

num_threads- number of threads, thread_par_adr- memory address where the solver thread pool 
parameters are saved, ha_race- memory address where an event handler is stored, which is used for 
synchronization between solver threads, counter_adr- subtask counter address and granulation- 
number of subtasks solved at once by one thread. With the add_object subroutine, the descriptor is 
written in memory together with other descriptors under a number, which is written in a special 
solver_index attribute of the satellite constellation descriptor (figure 2.b). This second descriptor 
contains various attributes that fully define the satellite constellation model. Further development of the 
model may lead to more attributes. The add_object routine has polymorphic properties and can be 
used for different descriptors. 

 
Situational problem composer 
 

An editor representing a dialogue form with various controls has been developed for composing 
situational problems. First, a space mission is selected among those displayed in the list box control. 
Depending on the type of the multi-satellite satellite system, they are selected from among possible 
(contextually determined) situational conditions and displayed in another list box control. The remaining 
objects are displayed in another window. One of them can be specified for the composition of situational 
tasks between two multidimensional objects (a close approach between satellites and space debris). 
Situational tasks between satellites from different multi-satellite missions within a federation are 
possible. Information is then taken from the descriptors of the selected objects. Some of this information 
relates to the dimensionality of the objects (number of satellites and number of space debris). Other 
information about the addresses in the memory where the state vectors of the satellites and space debris 
are located is copied also from descriptors of the space mission and space debris. The two objects 
(space mission and space debris population) must be created in advance - one based on a model for a 
multi-satellite system and the second, a collection of space debris (figure 1). 

After collecting the necessary parameters and compiling situational tasks, an actual situational 
solver is created to solve the compiled tasks. The descriptor of this solver is added to the already created 
descriptors with the following subroutine (Figure 3.a). 

In addition, a descriptor of situational tasks is created (Figure 3.b). This handle is used to 
communicate with other solvers as well as to control the situation solver. Information about the solver is 
recorded in the descriptor of the situation problems. Using this information, the solver is started for each 
time step. 

external      SatelliteIntegratorUPC 
   …    
CALL  CreatePoolThreads(SatelliteIntegratorUPC,NumThreads,Sit_threads_par,Sit_ha) 

 
   AI_pool_par%AI%num_threads    = NumThreads        
   AI_pool_par%AI%    ha_race        = AI_handler_addr  !ha_1                             a) 
   AI_pool_par%AI%counter_adr      = AI_GlbCount_addr) 
   AI_pool_par%AI%thread_par_adr= PoolParam_addr  
   AI_pool_par%AI%granulation        = Granularity  
  
    CALL  add_object(num_AIs,AIs_descriptor_adr,AIs_descriptor_adr,AI_pool_par) 

!____________________________________________________________________________ 
   IVP_par_SpCon%kind                = 1 
   IVP_par_SpCon%sort                 = 2 
   IVP_par_SpCon%name              = s_const_name                               b) 
   IVP_par_SpCon%IVP%solver_index    = num_AIs;  
   IVP_par_SpCon%IVP%num_objects    = Numsat  
   IVP_par_SpCon%IVP%t_adr           = LOC(t); IVP_par_SpCon%IVP%dt_adr   = LOC(dt);  
   IVP_par_SpCon%IVP%xvn_adr       = xvn_adr;  
   IVP_par_SpCon%IVP%xvk_adr       = xvk_adr;  
   IVP_par_SpCon%IVP%eps_adr       = eps_adr; 
   IVP_par_SpCon%IVP%adr_Grv_model = adr_perturbations;  
   IVP_par_SpCon%IVP%len_Grv_model = len_Grv_model 
   IVP_par_SpCon%IVP%transfer_data_adr= transfer_adr  
   IVP_par_SpCon%IVP%work_data_adr  = work_adr  
  
   CALL  add_object(num_IVPs, 

                        IVPs_descriptor_adr    = IVPs_descriptor_adr, & 
                        IVPs_descriptor_adr_new= IVPs_descriptor_adr,  level__1= IVP_par_SpCon) 
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Access to the addresses of the space debris state vectors is provided through a named common 
area /cDebris/. 

 
Situational problem solver 
 

A situational processor was developed for solving high-dimensional problems [5]. For this 
purpose, it is parallelized based on computational flows (thread parallelization). Each actual situational 
processor is created by a special subroutine with the launch of a specified number of computational 
threads to solve a separate group of situational tasks. Different groups of situational tasks can be solved 
within separate situational models. The information required for processing by the situational solvers is 
passed to them from parent computing threads through buffer subroutines [5]. One part of this 
information is contained in situational task descriptors (Figure 4). The management of the computations 
by the threads of the situation processor is done by a universal subroutine for managing different solvers 
[8]. This subroutine calls the real subroutine for situational analysis (the actual, specific part of the 
processor). It in turn calls separate subroutine functions, each describing a predicate function 
representing a separate situational condition. 

 

 
 

Fig. 3. а). Creation of situational solver; b). preparation  of the situational descriptor;  
c). Creation of situational descriptor 

 

 
 

Fig. 4. Part of the buffer subroutine illustrates the transmission of the necessary data  
to the situation solver via the derived type variable task_descriptor. The presence of an external relationship 

between objects is determined by the value of the variable named inter. 

  external                             SituationProcessorInterUPC 

                                                                                                                                                           a). 

CALL  CreatePoolThreads(SituationProcessorInterUPC,NumThreads,Sit_threads_par,Sit_ha) 

______________________________________________________________________________ 

   StPrb_param%kind               = 1      ! kind of the solver                                                                  b). 

   StPrb_param%name               = TRIM(IVP_par(kod_IVP)%name)//"/SitTask" 

   StPrb_param%SitProb%pool_index = num_AIs   

   StPrb_param%SitProb%IVPs_index = kod_IVP                ! num_IVPs 

   StPrb_param%SitProb%num_objects= num_sat               ! number of satellites 

.. StPrb_param%SitProb%max_num_sit= max_prob_cond  ! max number of sit conditions  

   StPrb_param%SitProb%num_sci_task= current_prob       ! number of sit problems 

   StPrb_param%SitProb%addr_sit_prob= adr_sit_probs      ! address in memory 

.. StPrb_param%SitProb%TrParam_adr  = TrajectoryParam_addr  

______________________________________________________________________________ 

CALL  add_object(num_StPrs,StPrb_descriptor_adr    =StPrs_descriptor_adr, &                          c). 

                           StPrb_descriptor_adr_new=StPrs_descriptor_adr,   level__3=StPrb_param); 

SUBROUTINE      SituationProcessorInterUPC(th_id_num) 

  external       Psitanal_UPC 

… 

   integer                 xvn_debris_adr,xvk_debris_adr;               logical           inter; 

   common   /cDebris/inter,xvn_debris_adr,xvk_debris_adr 

… 

  task_descriptor%num_sat            = num_sat 

  task_descriptor%t_adr                 = t_adr;                     task_descriptor% dt_adr = dt_adr 

  task_descriptor%xvn_adr            = xvn_adr;                task_descriptor%xvk_adr= xvk_adr 

  task_descriptor%max_num_sit    = max_num_sit 

  task_descriptor%num_sit_prob    = num_sit_prob 

  task_descriptor%sci_problem_adr= sci_problem_adr 

  task_descriptor%len_sci_task       = sci_task_len  

  task_descriptor%TrajectParam_adr= TrajectParam_adr 

  task_descriptor%TrajectParam_len= TrajectParam_len; 

  task_descriptor%inter                    = inter 

  task_descriptor%xvn_debris_adr  = xvn_debris_adr; 

  task_descriptor%xvk_debris_adr  = xvk_debris_adr;                  local_task_descriptor_adr= LOC(task_descriptor) 

 

  CALL  UPC(th_id_num,num_Sit_threads,ha_1,adr_glb_counter,thread_par_local,granule, & 

                          Psitanal_UPC,local_task_descriptor_adr,local_num_sit_prob) 

 

END SUBROUTINE  SituationProcessorInterUPC 
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To ensure the possibility of checking situational conditions whose models require information 
from different basic objects, it is first necessary to have access to such information. The situational 
analysis processor obtains the starting addresses of this information for each object system. For each 
individual pair of "satellite-debris" or "satellite-satellite" objects, a separate situational task is compiled. 
Access to the data for each individual object is achieved by indexing relative to the initial address. 

 
 

 
 

Fig. 5. Part of the situational condition model for close approach represented by a derived type variable. 
There is a separate attribute (id_debris or num_sat_61) for each variant (“satellite - space debris”  

or satellite - satellite) 

 
“Close approach“ situational condition 
 

Each situational task involves one or more situational conditions. For situational tasks related 
to the assessment of close approaches between satellites and space debris, one such condition is 

sufficient. This condition is related to checking if the distance between two objects 𝐷(𝑡)𝑠𝑎𝑡,𝑑𝑒𝑏𝑟𝑖𝑠;𝑖 

(satellite-space debris) is within a specified interval 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
 

1. 𝐷(𝑡)𝑠𝑎𝑡,𝑑𝑒𝑏𝑟𝑖𝑠;𝑖 = √(𝑥(𝑡)𝑖
𝑠 − 𝑥(𝑡)𝑖

𝑑)2 + (𝑦(𝑡)𝑖
𝑠 − 𝑦(𝑡)𝑖

𝑑)2 + (𝑧(𝑡)𝑖
𝑠 − 𝑧(𝑡)𝑖

𝑑)2 < 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 
In this expression, the index i is the identification number of an individual fragment from a whole 

population. The coordinates of satellites and space debris are obtained based on numerical integration 
with a constant step, for discrete moments of time, by models and solvers shown in Figure 1 at the first 
level. For more efficient calculations, the integration step can be within tens of seconds to a minute or 
two. In such a case, space objects travel relatively large distances, and time intervals in which 

𝐷𝑠𝑎𝑡,𝑑𝑒𝑏𝑟𝑖𝑠;𝑖 < 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (set parameter) cannot be determined based solely on the coordinates calculated 

with numerical integration. These intervals are easily skipped, especially when the orbital planes of the 
objects subtend large angles. This problem is solved by interpolating at intermediate points within an 
integration step ∆t. Various interpolation methods can be used for this purpose [9]. In the present work 
as a start, applying the Lagrange method is reported. The coefficients are calculated once for the 
satellite and the other object at each time step. 

In addition to calculating the minimum distance between the two objects, the relative velocity 

𝑣(𝑡)𝑠,𝑑;𝑖
𝑟𝑒𝑙  at the point of conjunction is also calculated: 

 

2. 𝑣(𝑡)𝑠,𝑑;𝑖
𝑟𝑒𝑙 = |√(𝑣𝑥,𝑖

𝑠 − 𝑣𝑥,𝑖
𝑑 )

2
+ (𝑣𝑦,𝑖

𝑠 − 𝑣𝑦,𝑖
𝑑 )

2
+ (𝑣𝑧,𝑖

𝑠 − 𝑣𝑧,𝑖
𝑑 )

2
|. 

 
Calculating the magnitude of this velocity is important in the event of an impact. This speed is 

calculated in case the distance between the objects is within specified limits 𝐷𝑠𝑎𝑡,𝑑𝑒𝑏𝑟𝑖𝑠;𝑖 < 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. The 

angle 𝜃𝑖 between the two vectors �⃗�𝑖
𝑠 and �⃗�𝑖

𝑑 is also relevant: 

 

3. 𝑐𝑜𝑠𝜃𝑖 =
𝑣𝑥,𝑖

𝑠 .𝑣𝑥,𝑖
𝑑 + 𝑣𝑦,𝑖

𝑠 .𝑣𝑦,𝑖
𝑑 +𝑣𝑧,𝑖
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2
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.√(𝑣𝑥,𝑖
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2

+(𝑣𝑦,𝑖
𝑑 )

2
+(𝑣𝑧,𝑖

𝑑 )
2
. 

 
A detailed description of the algorithms and programs for searching the time interval where (1) 

is fulfilled and determining the minimum distance between objects (within this interval) will be presented 
in another work. 

type          SitCond 

   …   ! General attributes 

   UNION 

   …    

     MAP 

        UNION 

          MAP 

              integer     id_debris   ! satellite - space debris 

          END MAP 

          MAP 

              integer     num_sat_61   ! satellite - satellite 

          END MAP 

        END UNION 

          real    distance 

          integer   interpolation_nodes ! Lagrange 

                                                          ! interpolation 

          integer   node                         ! Caunter 

          real*8   node_t (5)                 ! 

          real*8   nodes(6,5,2)  ! Storage for  

                                              ! interpolation 

     END MAP 

   END UNION 

end type  SitCond 
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Conclusion 
 

The editor for composing situational tasks and the processor for situational analysis have been 
further developed to achieve a change in the semantics of the relationships between models related to 
different underlying objects. We are also working on a situational condition for checking the conjunction 
between active satellites and space debris below a certain threshold of admissibility. After the initial 
development of the main additional means, optimization is forthcoming. 

Essential in the work is the interface between models describing a sequence of processes 
related to different multidimensional objects (space debris, multi-satellite systems). This approach can 
be used to simulate communication between satellites from different satellite systems within a 
federation. For this purpose, changes have been made to both the modeling tools (models of situational 
tasks) and the processor for solving situational tasks. 
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