S E S 2 0 2 3
Nineteenth International Scientific Conference
SPACE, ECOLOGY, SAFETY
24 — 26 October 2023, Sofia, Bulgaria

APPLYING SITUATION ANALYSIS SOLVER TO SATELLITE-SPACE DEBRIS
CLOSE APPROACHES PROBLEMS. INTERFACE BETWEEN MODELS.

Atanas Atanassov

Space Research and Technology Institute — Bulgarian Academy of Sciences
e-mail: At_M_Atanassov@yahoo.com

Keywords: Space mission analysis and design, situational analysis solver, orbital event, situational
condition, satellite-space debris close approaches, conjunction analysis.

Abstract: As the number of active and passive satellites of the Earth increases, the probability of a direct
collision either with some other satellite or with space debris grows. Analysis of the functionality of space systems
over time must take into account the possibility of such events, as well as the maneuvers performed to mitigate the
danger of a direct collision. The possibility of using the developed processor for situational analysis to solve close
approach problems between multi-satellite systems and space debris is considered. This processor is one of the
developed computing tools at the core of a multiphysics environment for space mission simulations. The focus is
on the interface between models of multi-satellite systems and space debris systems.

M3NOJNI3BAHE HA NPOLIECOPA 3A CUTYAUUOHEH AHAJIN3
NPU PELLABAHE HA 3A0AYU OT TUNA ,,CBJIINKABAHE MEXAY CNbTHUK
N KOCMUYECKHU OTJTOMKH*“

ATtaHac AtaHacoB

UHcmumym 3a KocMmudecku uscredsaHusi u mexHonoauu — brneapcka Akademusi Ha Haykume
e-mail: At_M_Atanassov@yahoo.com

Knroyoeu Aymu: AHanus u npoekmupaHe Ha KOCMUYECKU MUCUU, MPOUECop 3a cumyayuoHeH aHaus,
opbumarnHu cbbumusi, cumyauyuoHHU ycri08usi, conuxagaHe Mex0y CITbMHUUU U KOCMUYEeCKU OMJIIOMKU; .

Pesrome: C HapacmeaHe Ha 6pos Ha akmugHUMeE U MacusHU CMbMHUUU Ha 3eMsima ce ysefu4asa
8eposIMHOCMMa Om MPSIKO CMbJ/IKHOBEHUE, KaKmo Mex0y CTbMHUUU, maka U Mex0oy CTbMHUUU U KOCMUYECKU
omsomKu. AHanu3bm Ha ¢byHKYUOHa/IHOCmMma Ha KoCMuYeckume cucmemu 8b8 gpememo mpsibea 0a omyuma
8b3MOXHOCMIMa 0m makuea cbbumusi, KakKmo u om u38bpweaHuUme MaHe8puU 3a CMeKk4YasaHe Ha oracHocmma
om npsiko cmbJiKHOB8eHuUe. Pasanexda ce 8b3MOXHOCMMaA 3a U3rosizgaHe Ha pa3pabomeHusi npoyecop 3a
cumyauuoHeH aHanu3 3a pewaeaHe Ha 3adadyu Ha cbnuxasaHe Mex0y MHO20-CITbMHUKO8U cucmemu U
KoCMuYecKu omromMKu. To3u rpoyecop e e0HO om u3yucrumesnHume cpedcmea 8 ocHogama Ha Mynmughu3uyHa
cpefa 3a cumynayuu Ha KocMudecku mucuu. B yeHmbpa Ha eHumaHuemo e uHmepghetica mexdy modesnu Ha
MHO20-CITbMHUKO8U cucmeMu U cucmemu om KOCMUYECKU OMITOMKU.

Introduction

In recent decades, human activity in space has been increasing and this is expected to continue
in the future [1]. Missions involving different numbers of satellites of different classes are developed and
implemented. Federations of missions aimed at solving common tasks are considered. Horstmann at
all. [2] consider various sources of the increase in the number of space debris. Lewis and Marsh [3]
discuss various patterns of debris growth. The increasing number of space debris is emerging as a
significant problem in the near future.

The development of models for computer simulations of the functioning of satellite systems in
the conditions of the hostile environment space environment (in particular, the impact of space debris)
can provide helpful information at various stages of the preparation to the realization of the missions.
The inclusion in the analysis of satellite missions and space debris reveals opportunities for solving

94

tasks related to reducing the danger of direct collisions, as well as possible collisions [4]. The
modification of the functionality of multi-satellite missions/systems to solve relevant tasks can also be
explored further.

Algorithms, methods, and tools for simulations of space missions are developed at IKIT. This
paper presents part of the work on the development of a situational processor for determining close
approaches between satellites and space debris. Attention is focused on the semantics of
communications between models within a multiphysics environment for space mission simulations.

Development of tools for Multiphysics simulation of satellite missions

In [6], a multiphysics multi-layer simulation model including various basic objects was presented.
Fig. 1 shows a part of this model that is relevant to the present consideration.

L A i on Aehyris
Satellite. | atjon Space debris | / Observer 1 Took
constellation, model 1 at Earth
model 1
\
NIAN / /l
NN / .
| ReLTrarector [c
Trajectoh , ic
- \ :
TﬁajeCO\ry sdns | /| yrtamic i %
mydel N ns' Y Sgenes; - tio Level 2 | |©
calculations. . // (/isylalizatio 5
1 f/n 1 S
N AV 2
N
VNN
\\ \(/,‘¢
\
N
Situation o3
analysis, 1 Situation —
analysis 11 1 eve

Fig. 1. Part of the conceptual scheme of multiphysics environment for space mission simulation

The different models are located at levels corresponding to the sequence of execution of the
respective solvers. At the first level are models of multi-satellite systems and space debris. Other models
at this level are "Observer" models, which are auxiliary in nature and used to display dynamic scenes.
At the second level are models related to the calculation of parameters of the space environment at
points of the trajectory of the satellites from the various satellite systems included in the general
simulation model. At this level are models related to the visualization of some dynamic scenes. At the
third level are models of situational analysis.

The presented collections of models, which are vertically related to models of basic space
objects (satellites, systems of satellites, and space debris, all in the conditions of the atmosphere,
ionosphere, and magnetosphere) (can) be connected to each other through interfaces described in
corresponding descriptors [6]. Based on these descriptors, relevant solvers take the results of the
previous ones and thus simulate various processes (mechanical, situational, mechatronic, and
functional related to the operation of subsystems and payload of individual satellites).

In the conditions of federations between separate satellite systems, connections between some
models from different systems connected to major space objects are also necessary. Examples of such
connections are tasks for convergences between active satellites and objects from different populations
of passive, failed satellites, debris from satellites, and other space debris.

Each model is characterized by specific attributes. Setting attribute values to a model defines a
corresponding object. The relationships of an object to other objects are also important. The attributes
of individual objects are stored in descriptors. Each level of Figure 1 has a separate descriptor.

95

The number of descriptors for a level and the starting address at which it is located are shared by a
named common area. For this purpose, subroutine add_object is used (Fig. 2) [7].

external SatellitelntegratorUPC
CALL CreatePoolThreads(SatelliteIntegratorUPC,NumThreads,Sit_threads_par,Sit_ha)

Al_pool_par%Al%num_threads = NumThreads

Al_pool_par%Al% ha_race = Al_handler_addr 'ha_1 a)
Al_pool_par%Al%counter_adr = Al_GIlbCount_addr)
Al_pool_par%Al%thread_par_adr= PoolParam_addr
Al_pool_par%Al%granulation = Granularity

CALL add_object(num_Als,Als_descriptor_adr,Als_descriptor_adr,Al_pool_par)

IVP_par_SpCon%kind =1
IVP_par_SpCon%sort =2
IVP_par_SpCon%name =s_const_name b)

IVP_par_SpCon%IVP%solver_index = num_Als;
IVP_par_SpCon%IVP%num_objects = Numsat

IVP_par_SpCon%IVP%t_adr = LOC(t); IVP_par_SpCon%IVP%dt_adr = LOC(dt);
IVP_par_SpCon%IVP%xvn_adr = xvn_adr;
IVP_par_SpCon%IVP%xvk_adr = xvk_adr;
IVP_par_SpCon%IVP%eps_adr = eps_adr;

IVP_par_SpCon%IVP%adr_Grv_model = adr_perturbations;
IVP_par_SpCon%IVP%len_Grv_model = len_Grv_model
IVP_par_SpCon%IVP%transfer_data_adr= transfer_adr
IVP_par_SpCon%IVP%work_data_adr = work_adr

Fig. 2. a). Descriptor creation of solver descriptor; 6). descriptor creation of initial values problem

Figure 2.a shows a descriptor of computing processors. The attributes it includes are:
num_threads- number of threads, thread _par_adr- memory address where the solver thread pool
parameters are saved, ha_race- memory address where an event handler is stored, which is used for
synchronization between solver threads, counter_adr- subtask counter address and granulation-
number of subtasks solved at once by one thread. With the add_object subroutine, the descriptor is
written in memory together with other descriptors under a number, which is written in a special
solver_index attribute of the satellite constellation descriptor (figure 2.b). This second descriptor
contains various attributes that fully define the satellite constellation model. Further development of the
model may lead to more attributes. The add_object routine has polymorphic properties and can be
used for different descriptors.

Situational problem composer

An editor representing a dialogue form with various controls has been developed for composing
situational problems. First, a space mission is selected among those displayed in the list box control.
Depending on the type of the multi-satellite satellite system, they are selected from among possible
(contextually determined) situational conditions and displayed in another list box control. The remaining
objects are displayed in another window. One of them can be specified for the composition of situational
tasks between two multidimensional objects (a close approach between satellites and space debris).
Situational tasks between satellites from different multi-satellite missions within a federation are
possible. Information is then taken from the descriptors of the selected objects. Some of this information
relates to the dimensionality of the objects (number of satellites and number of space debris). Other
information about the addresses in the memory where the state vectors of the satellites and space debris
are located is copied also from descriptors of the space mission and space debris. The two objects
(space mission and space debris population) must be created in advance - one based on a model for a
multi-satellite system and the second, a collection of space debris (figure 1).

After collecting the necessary parameters and compiling situational tasks, an actual situational
solver is created to solve the compiled tasks. The descriptor of this solver is added to the already created
descriptors with the following subroutine (Figure 3.a).

In addition, a descriptor of situational tasks is created (Figure 3.b). This handle is used to
communicate with other solvers as well as to control the situation solver. Information about the solver is
recorded in the descriptor of the situation problems. Using this information, the solver is started for each
time step.

96

Access to the addresses of the space debris state vectors is provided through a named common
area /cDebris/.

Situational problem solver

A situational processor was developed for solving high-dimensional problems [5]. For this
purpose, it is parallelized based on computational flows (thread parallelization). Each actual situational
processor is created by a special subroutine with the launch of a specified nhumber of computational
threads to solve a separate group of situational tasks. Different groups of situational tasks can be solved
within separate situational models. The information required for processing by the situational solvers is
passed to them from parent computing threads through buffer subroutines [5]. One part of this
information is contained in situational task descriptors (Figure 4). The management of the computations
by the threads of the situation processor is done by a universal subroutine for managing different solvers
[8]. This subroutine calls the real subroutine for situational analysis (the actual, specific part of the
processor). It in turn calls separate subroutine functions, each describing a predicate function
representing a separate situational condition.

external SituationProcessorinterUPC

a).
CALL CreatePool Threads(SituationProcessorInterUPC,NumThreads,Sit_threads_par,Sit_ha)

StPrb_param%kind =1 Ikind of the solver b).
StPrb_param%name = TRIM(IVP_par(kod_IVP)%name)//"/SitTask"
StPrb_param%SitProb%pool_index = num_Als
StPrb_param%SitProb%IVPs_index = kod_IVP I'num_IVPs
StPrb_param%SitProb%num_objects= num_sat ! number of satellites

.. StPrb_param%SitProb%max_num_sit= max_prob_cond ! max number of sit conditions
StPrb_param%SitProb%num_sci_task= current_prob ! number of sit problems
StPrb_param%SitProb%addr_sit_prob= adr_sit_probs ! address in memory

.. StPrb_param%SitProb%TrParam_adr = TrajectoryParam_addr

CALL add_object(num_StPrs,StPrb_descriptor_adr =StPrs_descriptor_adr, & c).
StPrb_descriptor_adr_new=StPrs_descriptor_adr, level__3=StPrb_param);

Fig. 3. a). Creation of situational solver; b). preparation of the situational descriptor;
c). Creation of situational descriptor

SUBROUTINE SituationProcessorinterUPC(th_id_num)
external Psitanal UPC

integer xvn_debris_adr,xvk_debris_adr; logical inter;
common /cDebris/inter,xvn_debris_adr,xvk_debris_adr

task_descriptor%num_sat = num_sat
task_descriptor%t_adr =t_adr; task_descriptor% dt_adr = dt_adr
task_descriptor%xvn_adr = xvn_adr; task_descriptor%xvk_adr= xvk_adr

task_descriptor%max_num_sit = max_num_sit
task_descriptor%num_sit_prob = num_sit_prob
task_descriptor%sci_problem_adr= sci_problem_adr
task_descriptor%len_sci_task = sci_task_len
task_descriptor%TrajectParam_adr= TrajectParam_adr
task_descriptor%TrajectParam_len= TrajectParam_len;

task_descriptor%inter =inter
task_descriptor%xvn_debris_adr = xvn_debris_adr;
task_descriptor%xvk_debris_adr = xvk_debris_adr; local_task_descriptor_adr= LOC(task_descriptor)

CALL UPC(th_id_num,num_Sit_threads,ha_1,adr_glb_counter,thread_par_local,granule, &
Psitanal_UPC,local_task_descriptor_adr,local_num_sit_prob)

END SUBROUTINE SituationProcessorinterUPC

Fig. 4. Part of the buffer subroutine illustrates the transmission of the necessary data
to the situation solver via the derived type variable task_descriptor. The presence of an external relationship
between objects is determined by the value of the variable named inter.

97

To ensure the possibility of checking situational conditions whose models require information
from different basic objects, it is first necessary to have access to such information. The situational
analysis processor obtains the starting addresses of this information for each object system. For each
individual pair of "satellite-debris" or "satellite-satellite" objects, a separate situational task is compiled.
Access to the data for each individual object is achieved by indexing relative to the initial address.

type SitCond

! General attributes real ~distance

integer interpolation_nodes ! Lagrange

UNION - .
!interpolation
integer node ! Caunter
MS"\IT ION real*8 node_t (5) !
MAP real*8 nodes(6,5,2) ! Storage for
> -
integer id_debris ! satellite - space debris tinterpolation
END MAP END MAP
MAP END UNION
integer num_sat_61 ! satellite - satellite end type SitCond
END MAP
END UNION

Fig. 5. Part of the situational condition model for close approach represented by a derived type variable.
There is a separate attribute (id_debris or num_sat_61) for each variant (“satellite - space debris”
or satellite - satellite)

“Close approach* situational condition

Each situational task involves one or more situational conditions. For situational tasks related
to the assessment of close approaches between satellites and space debris, one such condition is
sufficient. This condition is related to checking if the distance between two objects D(t)sat depris:i
(satellite-space debris) is within a specified interval D esnota:

1. D(t)sat,debris;i = \[(x(t)f - x(t)?)z + (y(t)l.s - y(t)?)Z + (Z(t)f - Z(t)?)z < Dinresnota

In this expression, the index i is the identification number of an individual fragment from a whole
population. The coordinates of satellites and space debris are obtained based on numerical integration
with a constant step, for discrete moments of time, by models and solvers shown in Figure 1 at the first
level. For more efficient calculations, the integration step can be within tens of seconds to a minute or
two. In such a case, space objects travel relatively large distances, and time intervals in which
Dsat aenris;; < Distance (set parameter) cannot be determined based solely on the coordinates calculated
with numerical integration. These intervals are easily skipped, especially when the orbital planes of the
objects subtend large angles. This problem is solved by interpolating at intermediate points within an
integration step At. Various interpolation methods can be used for this purpose [9]. In the present work
as a start, applying the Lagrange method is reported. The coefficients are calculated once for the
satellite and the other object at each time step.

In addition to calculating the minimum distance between the two objects, the relative velocity
v(t)gfdl;i at the point of conjunction is also calculated:

2. w3 = | = 80"+ (05— o)+ - w2

Calculating the magnitude of this velocity is important in the event of an impact. This speed is
calculated in case the distance between the objects is within specified limits Dsq; gepris.i < Distance. The
angle 8; between the two vectors &7 and #¢ is also relevant:

d s ..d s .d
it Uy iy itVziVz

o) 05+ o5) +) + (o)

A detailed description of the algorithms and programs for searching the time interval where (1)
is fulfilled and determining the minimum distance between objects (within this interval) will be presented
in another work.

S
x’i.li

3. cosB; =

98

Conclusion

The editor for composing situational tasks and the processor for situational analysis have been
further developed to achieve a change in the semantics of the relationships between models related to
different underlying objects. We are also working on a situational condition for checking the conjunction
between active satellites and space debris below a certain threshold of admissibility. After the initial
development of the main additional means, optimization is forthcoming.

Essential in the work is the interface between models describing a sequence of processes
related to different multidimensional objects (space debris, multi-satellite systems). This approach can
be used to simulate communication between satellites from different satellite systems within a
federation. For this purpose, changes have been made to both the modeling tools (models of situational
tasks) and the processor for solving situational tasks.

Reference:

1. Selva, D., A. Golkar, O. Korobova, I. L. I. Cruz, P. Collopy et al. (2017) Distributed earth satellite systems:
What is needed to move forward?, Journal of Aerospace Information Systems, 14(8), 412-438.

2. Horstmann, A., Kebschull, C., Miller, S., Gamper, E., Hesselbach, S., Soggeberg, K., Ben Larbi, M.K., Becker,
M., Lorenz, J., Wiedemann, C. and Stoll, E., 2018. Survey of the current activities in the field of modeling
the space debris environment at TU Braunschweig. Aerospace, 5(2), p.37.

3. Lewis, H. G. and Marsh, N., 2021, May. Deep time analysis of space debris and space sustainability. In Proc.
8th European Conference on Space Debris.

4. Smirnov, N. N. ed., 2001. Space Debris: Hazard Evaluation and Debris. CRC Press.

5. Atanassov, A. M., 2016. Parallel satellite orbital situational problems solver for space missions design and
control. Advances in Space Research, 58(9), pp. 1819-1826.

6. Atanassov, A. and Atanassova, L., 2020. Development of Tools for Models’ Design of Systems of Multi-Satellite
Systems. Proceedings SES, 2020, pp. 110-115.

7. Atanassov, A. M., 2015. Development Classes of Objects’ Descriptors for Space Missions Simulation.
Proceedings SES, 2016, pp. 51-55.

8. Atanassov, A., UNIFICATION OF “POOL OF THREADS” CONTROL IN THE FRAMES OF DIFFERENT
PARALLEL SOLVERS. In Proceedings of SES 2016, pp. 42—46.

9. KanbHuukui, J1. A., JobpoTtuH, . A., XKeepxees, B. ®., and Canoros, H. A., 1976. CnewLmnanbHbIi Kypc BbICLIEN
mMaTemaTuKu A1 BTY30B.

99

